Forschungszentrum L3S

Ranking Clusters for Web Search

Gianluca Demartini Paul–Alexandru Chirita Ingo Brunkhorst Wolfgang Nejdl

L3S Info Lunch Hannover, 08 November 2006

Outline

- Introduction
- Rankings Algorithms considered
- Experimental Setup
- Results
- Conclusions

Introduction (1)

- Search the Web: results are presented sorted using a score value
- Users should be able to browse the results efficiently
- An interface that clusters documents performs better
- Common task in Clustering Search Engines (SE): ordering the results of the classification
- An efficient ordering of the clusters will be benefic for the user

Introduction (2)

- We analyze a set of ten different metrics for ordering clusters of search engine result:
 - Ranking by SE Scores
 - Ranking by Query to Cluster Similarity
 - Ranking by Intra Cluster Similarity
 - Measures independent of the documents within the cluster
- Two different clustering algorithms: performances of the cluster rankings is not dependent of the clustering algorithms used

Related Work (1)

SE already employ such an output structuring: Vivisimo, iBoogie, Mooter, Grokker, etc.

Many Techniques to cluster web search results: flat manner, or in a hierarchical way

Clustering useful for clarifying a vague query, by showing the dominant themes

Related Work (2)

- How to display search results to the users: they find answers faster using a categorized organization
- Faceted search: an Alphabetical order is commonly utilized
- Text Classifiers: SVM better than Bayesian for Text Classification

Outline

- Introduction
- Rankings Algorithms considered
- Experimental Setup
- Results
- Conclusions

■ 10 different ranking algorithms considered:

- Ranking by search engine scores (4)
- Ranking by Query to Cluster Similarity (1)
- Ranking by Intra Cluster Similarity (2)
- Measures independent of the documents within the cluster (3)

Ranking by search engine scores (1)

PageRank computation: $PRv = x^{-2.1}$ page at position x

Average PageRank AvgPR(C) =
$$\frac{1}{n} \sum_{p=1}^{n} PRv(p)$$
, \forall page $p \in C$

Total PageRank SumPR(C) = $\sum_{p=1}^{n} PRv(p)$, \forall page $p \in C$

Ranking by search engine scores (2)

Average Rank

$$\operatorname{AvgRank}(C) = \frac{1}{n} \sum_{p=1}^{n} \operatorname{Rank}(p), \forall \text{ page } p \in C$$

Minimum Rank

$$MinRank(C) = \min_{p} Rank(p), \forall page \ p \in C$$

Normalized Logarithmic Likelihood Ratio

$$\text{NLLR}(q, p) = \sum_{t \in q} P(t|p) * \log \frac{(1-\lambda) \cdot P(t|p) + \lambda \cdot P(t|C)}{\lambda \cdot P(t|C)}$$

Average Query/Page similarity

AvgSimilarity(C) =
$$\frac{1}{n} \sum_{p=1}^{n} \text{NLLR}(\mathbf{Q}, \mathbf{p}), \forall \text{ page } p \in C$$

Ranking by Intra Cluster Similarity

- Similarity between pages and categories (title + description)
 - values returned by the classifiers
 - probability that a document belongs to some category
 - strength with which every result belongs to its assigned category

Average Intra Cluster Similarity. (AvgValue)

- over all the pages that belong to a category
- to the top of the list, clusters where the results are most relevant to their category

■ Maximum Intra Cluster Similarity. (MaxValue)

- the focus is on the best match-ing document of each cluster only
- the results the user views first are those that have been best classified

Other Metrics

- Metrics which seem to be used by current commercial web SE and a baseline
- Order by Size
 - using the number of docs belonging to the category
 - used by most of the Clustering SE (e.g. Vivisimo)
- Alphabetical Order
 - used in Faceted Search (e.g. Flamenco)
- **Random** Order
 - to compare the other metrics

Outline

- Introduction
- Basic Concepts
- Rankings Algorithms considered
- Experimental Setup
- Results
- Conclusions

Experimental Setup (1)

- 20 algorithms (10 ranks, 2 classifiers), 20 people
- Supporting Vector Machines (SVM) and Bayes as Text Classifiers
 - the performance of the ranking algorithms considered does not depend on the clustering algorithm used
- ODP categories (top 3 levels)
- 50 000 most frequent terms in ODP titles and descriptions of web pages
- **5** 894 English categories

Experimental Setup (2)

Each user evaluated each (algorithm, classifier) once:

- task: select the first relevant result
- no information about which algorithm was being used
- subject began the evaluation from different algorithms
- the order of results within a category is the one of Google
- We measure the time spent for search the relevant result and the position of the results
- Each user 20 query:
 - 12 from Topic Distillation Task of the Web Track 2003
 - 8 from TREC Web Track 2004 (4 of them ambiguous)
 - one extra query at the beginning for getting familiarized

Experimental Setup (3)

Classification:

- retrieved titles and snippets of the top 50 results from Google
- allowed each result to belong to maximum three categories (the ones with the best similarity values)
- showed to the user only the top 75 results after ranking the clusters to put emphasis on the performances of the ranking
- all the results were cached to ensure that results from different participants were comparable

🕑 Search Page - Mozilla Firefox	
Ele Edit View Go Bookmarke Toole Belp	0
🗇 • 🛶 - 🥵 💿 🐔 🗋 http://locahost:8080/webapp/query/search 🔽 💿 co 🔃	
back	^
Query: ACM search	
You searched for	
Keywords: ACM.	=
Results:	
Computers_Companies_Data_Warehousing	
ACM Queue - Developer Tools, Hardware, Security, Open Source	
Snippet: ACM home, about queue - contact us - privacy policy - advisory board - writer faq - back issues - advertise with queue - dev tools roadmap - RSS feeds	
IEEE Xplore: Networking, IEEE/ACM Transactions on	
Snippet: IEEE/ACM Transactions on Networking, which is published jointly by the IEEE and the Association of Computing Machinery, was the number eleven most-cited	
ACM 2006 Conference	
Snippet: The 2006 ACM Multimedia Conference Call for Paper The Open-source Software Competition is a recent addition to the ACM Multimedia program and 2006 will	
Sports_Equestrian_Buzkashi	
The ACM-ICPC International Collegiate Programming Contest We	
Snippet: This is the official site for the ACM International Collegiate Programming Contest sponsored by IBM which is conducted annually throughout the world for	
ACM Queue - Developer Tools, Hardware, Security, Open Source	
Snippet: ACM home, about queue - contact us - privacy policy - advisory board - writer faq - back issues - advertise with queue - dev tools roadmap - RSS feeds	
IEEE Xplore: Networking, IEEE/ACM Transactions on	
Snippet: IEEE/ACM Transactions on Networking, which is published jointly by the IEEE and the Association of Computing Machinery, was the number eleven most-cited	

Outline

- Introduction
- Basic Concepts
- Rankings Algorithms considered
- Experimental Setup
- Results
- Conclusions

Experimental Results

Experimental Results

Time to find the relevant result

- NLLR allowed the user to find relevant results in **the fastest** way, with an average of 31s
- performances of Alphabetical and the Size based rankings is rather average
- Topic Distillation ones have been the most difficult: they have a task associated
- Web Track ambiguous ones were the easiest: no specific search task was associated, and thus the first relevant result was easier to find
- experiment is **statistically significant** at a 99% confidence level.

Experimental Results

Average of the position of the algorithm for each user

Experimental Results

Average Rank of the Result

Gianluca Demartini

Experimental Results

24

Experimental Results

The results are slightly better when using SVM

Conclusions & Future Work

- Similarity between the user query and the documents seems to be the best approach to order search result clusters
- Alphabetical and Size Ranking are not so good

We want to test other algorithms

- click-thorought data
- clustering algorithms which produce results more apart from each other

Thanks for your attention!

