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Research	Interests	

•  En#ty-centric	Informa#on	Access	(2005-now)	
–  Structured/Unstruct	data	(SIGIR	12),	TRank	(ISWC	13)	
– NER	in	Scien,fic	Docs	(WWW	14),	Preposi,ons	(CIKM	14)	

•  Hybrid	Human-Machine	Systems	(2012-now)	
–  ZenCrowd	(WWW	12,	VLDBJ),	CrowdQ	(CIDR	13)	
– Human	Memory	based	Systems	(WWW	14,	PVLDB)	

•  Be;er	Crowdsourcing	PlaAorms	(2013-now)	
–  Pick-a-Crowd	(WWW	13),	Malicious	Workers	(CHI	15)	
–  Scale-up	Crowdsourcing	(HCOMP	14),	Dynamics	(WWW	15)	
–  EPSRC	First	Grant	2016-2018	
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Gramma,cal	Correc,on	



Motivations and Task Overview 
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•  Grammatical correction is important by itself 
–  Also as a part of Machine Translation or Speech 

Recognition 
 
Correction of textual content written by English Learners. 
 
 
 
 
⇒ Rank candidate prepositions by their likelihood of 
being correct in order to potentially replace the original. 
 
 

I am new in android programming.
        [to, at, for, …]

Roman	Prokofyev,	Ruslan	Mavlyutov,	Mar,n	Grund,	Gianluca	Demar,ni,	and	Philippe	Cudré-
Mauroux.	Correct	Me	If	I'm	Wrong:	Fixing	Gramma#cal	Errors	by	Preposi#on	Ranking.	In:	23rd	
ACM	Interna,onal	Conference	on	Informa,on	and	Knowledge	Management	(CIKM	2014).		



What	we	do	

•  English	language	only	
–  Standard	collec,on:	CoNLL-2013	
– New	collec,on	based	on	Web	user-generated	
content:	Stack	Exchange	

•  Preposi,on	correc,on	(13%	of	all	errors)	at	
sentence	level	

•  N-gram	decomposi,on	of	the	input	sentence	
•  Ranking	of	prep	by	the	likelihood	of	being	correct	
•  Define	features	and	binary	classify	each	prep	
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Key Ideas 

•  Usage of a particular preposition is 
governed by a particular word/n-gram; 

⇒ Task: select/aggregate n-grams that 
influence preposition usage; 

⇒ Use n-gram association measures to 
score each preposition. 
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Processing Pipeline 
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Tokenization and n-gram distance 
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j=5i+1i=1
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532
PREP youforcethe
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May

7

(n-1)-gram

Distance
min(|i-j|, |i+n-2-j|)

N-gram	 Type	 Distance	

the	force	PREP	 3gram	 -2	

force	be	PREP	 3gram	 -1	

be	PREP	you	 3gram	 0	

PREP	you	.	 3gram	 1	

N-gram	 Type	 Distance	

be	PREP	 2gram	 -1	

PREP	you	 2gram	 1	

PREP	.	 2gram	 2	



N-gram association measures 
Motivation:  
use association measures to compute a score that will be 
proportional to the likelihood of an n-gram appearing 
together with a preposition. 
 
 
 
 
 
 
 
Background N-gram collection: Google Books N-grams. 
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N-gram	 PMI	scores	by	preposi#on	

force	be	PREP	 (with:	-4.9),	(under:	-7.86),	(at:	-9.26),	(in:	-9.93),	…	

be	PREP	you	 (with:	-1.86),	(amongst:	-1.99),	(beside:	-2.26),	…	

PREP	you	.	 (behind:	-0.71),	(beside:	-0.82),	(around:	-0.84),	…	



PMI-based Features 
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•  Average rank of a preposition among the ranks of the 
considered n-grams; 

•  Average PMI score of a preposition among the PMI 
scores of the considered n-grams; 

•  Total number of occurrences of a certain preposition 
on the first position in the ranking among the ranks 
of the considered n-grams. 

Calculated across 2 logical groups (considered n-grams): 
•  N-gram size; 
•  N-gram distances. 



Central N-grams 
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Distribution of correct preposition counts on top of PMI 
rankings with respect to n-gram distance. 



Other features 
•  Confusion matrix values 

•  Some prep are most likely correct (‘but’ 0.992) 

•  POS tags: 5 most frequent tags + “OTHER” catch-all 
tag; 

•  Preposition itself: sparse vector of the size of the 
candidate preposition set.  
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to	 in	 of	 for	 on	 at	 with	 from	
to	 0.958	 0.007	 0.002	 0.011	 0.004	 0.003	 0.005	 0.002	
in	 0.037	 0.79	 0.01	 0.009	 0.066	 0.036	 0.015	 0.008	



Preposition selection 
 
Supervised Learning algorithm. 
•  Two-class classification with a confidence score 

for every preposition from the candidate set; 
•  Every candidate preposition will receive its own 

set of feature values; 

Classifier: random forest. 
Errors are 5%. Balancing by under-sampling non-
errors. 
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Training/Test Collections 

Training collection: 
•  First Certificate of English (Cambridge exams) 
Test collections: 
•  CoNLL-2013 (50 essays written by NUS students) 
•  StackExchange (historical edits) 
 

Cambridge	FCE	 CoNLL-2013	 StackExhange	

N#	sentences	 27k	 1.4k	 6k	
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Experiments: Feature Importance 

 
 
 
 
 
 
All top features except “confusion matrix” 
are based on the PMI scores. 
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Feature	name	 Importance	score	
Confusion	matrix	probability	 0.28	
Top	preposi,on	counts	(3grams)	 0.13	
Average	rank	(distance=0)	 0.06	
Central	n-gram	rank	 0.06	
Average	rank	(distance=1)	 0.05	



Test Collection Evaluation 
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Collec#on	 Approach	 Precision	 Recall	 F1	
score	

CoNLL-2013	
NARA	Team	@CoNLL2013	 0.2910	 0.1254	 0.1753	

N-gram-based	classifica,on	 0.2592	 0.3611	 0.3017	

StackExchange	

N-gram-based	classifica,on	 0.1585	 0.2185	 0.1837	

N-gram-based	classifica,on	
(cross-valida,on)	

0.2704	 0.2961	 0.2824	



Takeaways 

•  PMI association measures 
•  + preposition ranking 
⇒ allow to significantly outperform the state 
of the art. 

•  Portable approach (train on one collection 
to test on a different one) 
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Named	En,ty	Recogni,on	



Problem Definition 

•  search engine 
•  web search engine 
•  navigational query 
•  user intent 
•  information need 
•  web content 
•  … 

Entity type: 
scientific concept 

19	

Roman	Prokofyev,	Gianluca	Demar,ni,	and	Philippe	Cudré-Mauroux.	Effec#ve	
Named	En#ty	Recogni#on	for	Idiosyncra#c	Web	Collec#ons.	In:	23rd	
Interna,onal	Conference	on	World	Wide	Web	(WWW	2014).		



Traditional NER 
Types: 
•  Maximum Entropy (Mallet, NLTK) 
•  Conditional Random Fields (Stanford NER, Mallet) 
 
Properties: 
•  Require extensive training 
•  Usually domain-specific, different collections 

require training on their domain 
•  Very good at detecting such types as Location, 

Person, Organization 
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Proposed Approach 
Our problem is defined as a classification task. 
 
Two-step classification: 
•  Extract candidate named entities using frequency 

filtration algorithm. 
•  Classify candidate named entities using 

supervised classifier. 
 
Candidate selection should allow us to greatly 
reduce the number of n-grams to classify, possibly 
without significant loss in Recall. 
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Pipeline 
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Candidate Selection: Part I 

Consider all bigrams with frequency > k 
(k=2): 
 
 
 
 
 
 
 
 
 
 

candidate named:    5
entity are:         4
entity candidate:   3
entity in:          18
entity recognition: 12
named entity:       101
of named:           10
that named:         3
the named:          4

candidate named:    5
entity candidate:   3
entity recognition: 12
named entity:       101

NLTK stop word filter 
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Candidate Selection: Part II 

Trigram frequency is looked up from the n-gram index. 
 
 
 
 
 
 
 
 
 
 

candidate named entity: 5
named entity candidate: 3
named entity recognition: 12
named entity: 101
candidate named: 5
entity candidate: 3
entity recognition: 12

candidate named:    5
entity candidate:   3
entity recognition: 12
named entity:       101

candidate named entity: 5
named entity candidate: 3
named entity recognition: 12
named entity: 81
candidate named: 0
entity candidate: 0
entity recognition: 0
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Candidate Selection: Discussion 
Possible to extract n-grams (n>2) with frequency ≤k 

N-gram frequency in document

C
o
u

n
t Valid

Invalid
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0k

1k

2k

3k

4k

25	



After Candidate Selection 

TwiNER: named entity 
recognition in targeted 
twitter stream 
‘SIGIR 2012 
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Classifier: Overview 

Machine Learning algorithm: 
Decision Trees from scikit-learn package. 
 
Feature types: 
•  POS Tags and their derivatives 
•  External Knowledge Bases (DBLP, DBPedia) 
•  DBPedia relation graphs 
•  Syntactic features 
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Datasets 
Two collections: 
•  CS Collection (SIGIR 2012 Research Track): 100 papers 
•  Physics collection: 100 papers randomly selected from 

arXiv.org High Energy Physics category 

 CS	Collec#on	 Physics	Collec#on	
N#	Candidate	N-grams	 21	531	 18	129	
N#	Judged	N-grams	 15	057	 11	421	
N#	Valid	En,,es	 8	145	 5	747	
N#	Invalid	N-grams	 6	912	 5	674	

Available at:  github.com/XI-lab/scientific_NER_dataset 
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Features: External Knowledge 
Bases 

Domain-specific knowledge bases: 

•  DBLP (Computer Science): contains author-
assigned keywords to the papers 

•  ScienceWISE: high-quality scientific concepts 
(mostly for Physics domain) 
http://sciencewise.info 

We perform exact string matching with these 
KBs. 
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Features: DBPedia, part I 
DBPedia pages essentially represent valid entities 
 
But there are a few problems when: 
•  N-gram is not an entity 
•  N-gram is not a scientific concept (“Tom Cruise” in IR 

paper) 

CS	Collec#on	 Physics	Collec#on	
Precision	 Recall	 Precision	 Recall	

	Exact	string	matching	 0.9045	 0.2394	 0.7063	 0.0155	
	Matching	with	
redirects	

0.8457	 0.4229	 0.7768	 0.5843	
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Features: DBPedia, part II 
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Features: Syntactic 

Set of common syntactic features: 
•  N-gram length in words 
•  Whether n-gram is uppercased 
•  The number of other n-gram given n-gram 

is part of 
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All results are obtained using 10-fold cross-validation. 



Experiments: Feature Importance 

Importance	
NN	STARTS	 0.3091	
DBLP	 0.1442	
Components	+	DBLP	 0.1125	
Components	 0.0789	
VB	ENDS	 0.0386	
NN	ENDS	 0.0380	
JJ	STARTS	 0.0364	

Importance	
ScienceWISE	 0.2870	
Component	+	
ScienceWISE	

0.1948	

Wikipedia	redirect	 0.1104	
Components	 0.1093	
Wikilinks	 0.0439	
Par,cipa,on	count	 0.0370	

CS Collection, 7 features Physics Collection, 6 features 
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Experiments: MaxEntropy 

Precision	 Recall	 F1	score	
Maximum	Entropy	 0.6566	 0.7196	 0.6867	
Decision	Trees	 0.8121	 0.8742	 0.8420	

MaxEnt classifier receives full text as input. 
(we used a classifier from NLTK package) 
 
Comparison experiment: 80% of CS 
Collection as a training data, 20% as a test 
dataset. 
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Lessons Learned 
Classic NER approaches are not good enough for 
Idiosyncratic Web Collections  
 
Leveraging the graph of scientific concepts is a key 
feature 
 
Domain specific KBs and POS patterns work well 
 
Experimental results show up to 85% accuracy over 
different scientific collections 
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Conclusions	

•  N-gram	sta,s,cs	for	
– Preposi,on	correc,on	
– Named	en,ty	recogni,on	for	idiosyncra,c	
documents	

•  Defined	as	binary	classifica,on	problems	
– Over	a	set	of	features	

•  What	works:	
– PMI,	correla,ons,	background	knowledge	bases/
corpora	

gianlucademar,ni.net	 36	


