Ranking Clusters for Web Search

Gianluca Demartini
Paul–Alexandru Chirita
Ingo Brunkhorst
Wolfgang Nejdl

L3S Info Lunch
Hannover, 08 November 2006
Outline

- Introduction
- Rankings Algorithms considered
- Experimental Setup
- Results
- Conclusions
Introduction (1)

- Search the Web: results are presented sorted using a score value
- Users should be able to browse the results efficiently
- An interface that clusters documents performs better
- Common task in Clustering Search Engines (SE): ordering the results of the classification
- An efficient ordering of the clusters will be beneficial for the user
Introduction (2)

- We analyze a set of ten different metrics for ordering clusters of search engine result:
 - Ranking by SE Scores
 - Ranking by Query to Cluster Similarity
 - Ranking by Intra Cluster Similarity
 - Measures independent of the documents within the cluster

- Two different clustering algorithms: performances of the cluster rankings is not dependent of the clustering algorithms used
Related Work (1)

- SE already employ such an output structuring: Vivisimo, iBoogie, Mooter, Grokker, etc.

- Many Techniques to cluster web search results: flat manner, or in a hierarchical way

- Clustering useful for clarifying a vague query, by showing the dominant themes
Related Work (2)

- How to display search results to the users: they find answers faster using a categorized organization

- Faceted search: an Alphabetical order is commonly utilized

- Text Classifiers: SVM better than Bayesian for Text Classification
Outline

- Introduction
- Rankings Algorithms considered
- Experimental Setup
- Results
- Conclusions
Cluster Ranking Algorithms

- 10 different ranking algorithms considered:
 - Ranking by search engine scores (4)
 - Ranking by Query to Cluster Similarity (1)
 - Ranking by Intra Cluster Similarity (2)
 - Measures independent of the documents within the cluster (3)
Ranking by search engine scores (1)

- **PageRank computation**: \(PR_v = x^{-2.1} \)
 page at position \(x \)

- **Average PageRank**
 \[\text{AvgPR}(C) = \frac{1}{n} \sum_{p=1}^{n} PR_v(p), \quad \forall \text{ page } p \in C \]

- **Total PageRank**
 \[\text{SumPR}(C) = \sum_{p=1}^{n} PR_v(p), \quad \forall \text{ page } p \in C \]
Ranking by search engine scores (2)

- **Average Rank**

\[
\text{AvgRank}(C) = \frac{1}{n} \sum_{p=1}^{n} \text{Rank}(p), \ \forall \text{ page } p \in C
\]

- **Minimum Rank**

\[
\text{MinRank}(C) = \min_{p} \text{Rank}(p), \ \forall \text{ page } p \in C
\]
Ranking by Query to Cluster Similarity

- Normalized Logarithmic Likelihood Ratio

\[
\text{NLLR}(q, p) = \sum_{t \in q} P(t|p) \times \log \left(\frac{(1 - \lambda) \cdot P(t|p) + \lambda \cdot P(t|C)}{\lambda \cdot P(t|C)} \right)
\]

- Average Query/Page similarity

\[
\text{AvgSimilarity}(C) = \frac{1}{n} \sum_{p=1}^{n} \text{NLLR}(Q, p), \ \forall \ \text{page } p \in C
\]
Ranking by Intra Cluster Similarity

- Similarity between pages and categories (title + description)
 - values returned by the classifiers
 - probability that a document belongs to some category
 - strength with which every result belongs to its assigned category

- **Average Intra Cluster Similarity**. (AvgValue)
 - over all the pages that belong to a category
 - to the top of the list, clusters where the results are most relevant to their category

- **Maximum Intra Cluster Similarity**. (MaxValue)
 - the focus is on the best match-ing document of each cluster only
 - the results the user views first are those that have been best classified
Other Metrics

- Metrics which seem to be used by current commercial web SE and a baseline

- Order by **Size**
 - using the number of docs belonging to the category
 - used by most of the Clustering SE (e.g. Vivisimo)

- **Alphabetical** Order
 - used in Faceted Search (e.g. Flamenco)

- **Random** Order
 - to compare the other metrics
Outline

- Introduction
- Basic Concepts
- Rankings Algorithms considered
- Experimental Setup
- Results
- Conclusions
Experimental Setup (1)

- 20 algorithms (10 ranks, 2 classifiers), 20 people
- Supporting Vector Machines (SVM) and Bayes as Text Classifiers
 - the performance of the ranking algorithms considered does not depend on the clustering algorithm used
- ODP categories (top 3 levels)
- 50,000 most frequent terms in ODP titles and descriptions of web pages
- 5,894 English categories
Experimental Setup (2)

- Each user evaluated each (algorithm, classifier) once:
 - task: select the first relevant result
 - no information about which algorithm was being used
 - subject began the evaluation from different algorithms
 - the order of results within a category is the one of Google

- We **measure** the **time** spent for search the relevant result and the **position** of the results

- Each user 20 query:
 - 12 from Topic Distillation Task of the Web Track 2003
 - 8 from TREC Web Track 2004 (4 of them ambiguous)
 - one extra query at the beginning for getting familiarized
Experimental Setup (3)

Classification:
- retrieved titles and snippets of the top 50 results from Google
- allowed each result to belong to maximum three categories (the ones with the best similarity values)
- showed to the user only the top 75 results after ranking the clusters to put emphasis on the performances of the ranking
- all the results were cached to ensure that results from different participants were comparable
<table>
<thead>
<tr>
<th>Computers_Companies_Data_Warehousing</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM Queue - Developer Tools, Hardware, Security, Open Source</td>
</tr>
<tr>
<td>Snippet: ACM home, about queue - contact us - privacy policy - advisory board - writer faq - back issues - advertise with queue - dot tools roadmap - RSS feeds ...</td>
</tr>
<tr>
<td>IEEE Xplore: Networking, IEEE/ACM Transactions on</td>
</tr>
<tr>
<td>Snippet: IEEE/ACM Transactions on Networking, which is published jointly by the IEEE and the Association of Computing Machinery, was the number eleven most-cited ...</td>
</tr>
<tr>
<td>ACM 2006 Conference</td>
</tr>
<tr>
<td>Snippet: The 2006 ACM Multimedia Conference Call for Paper ... The Open-source Software Competition is a recent addition to the ACM Multimedia program and 2006 will ...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sports_Equestrian_Buzkashi</th>
</tr>
</thead>
<tbody>
<tr>
<td>The ACM-ICPC International Collegiate Programming Contest We</td>
</tr>
<tr>
<td>Snippet: This is the official site for the ACM International Collegiate Programming Contest sponsored by IBM which is conducted annually throughout the world for ...</td>
</tr>
<tr>
<td>ACM Queue - Developer Tools, Hardware, Security, Open Source</td>
</tr>
<tr>
<td>Snippet: ACM home, about queue - contact us - privacy policy - advisory board - writer faq - back issues - advertise with queue - dot tools roadmap - RSS feeds ...</td>
</tr>
<tr>
<td>IEEE Xplore: Networking, IEEE/ACM Transactions on</td>
</tr>
<tr>
<td>Snippet: IEEE/ACM Transactions on Networking, which is published jointly by the IEEE and the Association of Computing Machinery, was the number eleven most-cited ...</td>
</tr>
</tbody>
</table>
Outline

- Introduction
- Basic Concepts
- Rankings Algorithms considered
- Experimental Setup
- Results
- Conclusions
Experimental Results

- Time to find the relevant result
Experimental Results

Time to find the relevant result

- **NLLR** allowed the user to find relevant results in the fastest way, with an average of 31s.
- Performances of **Alphabetical** and the **Size** based rankings is rather average.
- Topic Distillation ones have been the most difficult: they have a task associated.
- Web Track ambiguous ones were the easiest: no specific search task was associated, and thus the first relevant result was easier to find.
- Experiment is statistically significant at a 99% confidence level.
Experimental Results

- Average of the position of the algorithm for each user
Experimental Results

- Average Rank of the Result
Experimental Results

- Average Rank of the Cluster
Experimental Results

- The results are slightly better when using SVM
Conclusions & Future Work

- Similarity between the user query and the documents seems to be the best approach to order search result clusters.

- Alphabetical and Size Ranking are not so good.

- We want to test other algorithms:
 - click-thorough data
 - clustering algorithms which produce results more apart from each other.
Thanks for your attention!

Q&A