Bias in Human-in-the-loop Artificial Intelligence

Gianluca Demartini

demartini@acm.org

@eglu81 The University of Queensland, Australia

Research Interests

- Entity-centric Information Access (since 2005)
 - Structured/Unstruct data (SIGIR 12), TRank (ISWC 13, WSemJ 16)
 - Entity Extraction (WWW 14), Prepositions (CIKM 14), Entity Cards (SIGIR 19)
 - IR Evaluation (IRJ 2015, ECIR 16 Best Paper, CIKM 17, SIGIR 18, CIKM 19)
- Human-in-the-loop Information Systems (since 2012)
 - Entity Linking (WWW 12, VLDBJ), CrowdQ (CIDR 13)
 - Huml systems overview (COMNET 15, FnT 17)
- Better Crowdsourcing Platforms (since 2013)
 - Platform Dynamics (WWW 15), Wikidata (CSCWJ 18)
 - Pick-a-Crowd (WWW 13), Scheduling Tasks (WWW 16)
 - Agreement (ICTIR 17, HCOMP 17), Pricing Tasks (HCOMP 14)
- Human Factors in Crowdsourcing (since 2015)
 - Malicious Workers (CHI 15), Attack Schemes (HCOMP 18 Best Paper, JAIR)
 - Modus Operandi (UBICOMP17, HT19, WSDM20), Bias (SIGIR18, ECIR20)
 - Time (HCOMP 16), Complexity (HCOMP 16), Abandonment (WSDM19, TKDE)
- Data Quality (since 2019)
 - Data Workers (SIGIR 20), Misinfo (SIGIR 20, CIKM 20), Know Graphs (ISWC 19)
 - Remove noise (WWW 19), Unknown Unknowns (ECAI 20)
 - User Behavior Embeddings (CIKM 20)

Australian Government Australian Research Council

facebook research

Outline

- Bias in Crowd-generated Data
 - Quality Control and Adversarial Attacks (HCOMP 2018 best paper + JAIR)
 - Wikidata editors and graph (CSCWJ + ISWC 2019)
 - Political bias (ECIR 2020, SIGIR 2020, CIKM 2020)
- Modelling Behavior
 - Logging Behaviors
 - Task Abandonment (WSDM 2019 + TKDE)
 - Experienced crowd workers (WSDM 2020)
 - Behavior embeddings (CIKM 2020)

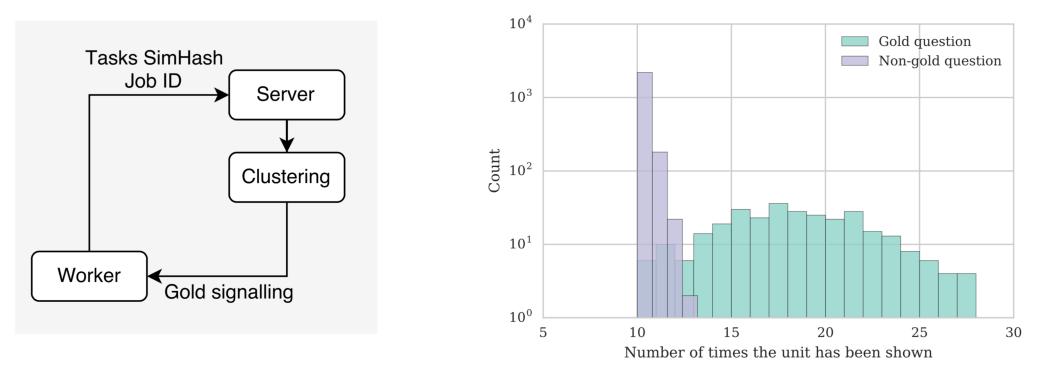
Crowdsourcing Quality control: Gold Questions

- Quality Control in Crowdsourcing
- Use known (ground truth) answers to check crowd answers
- If they answer correctly
 - we trust the other answers and use them
 - otherwise we discard them
- Randomly distributed
- Indistinguishable by workers
- Very few available! (Expensive to generate)
 -> Repeated across different workers

	01
•	Q1
•	Q2
•	Q3
•	Q4
•	Q5
•	Q6
•	Q7 <- Gold Question
•	Q8
•	Q9
•	Q10

Power Imbalance - Gold Question Attacks

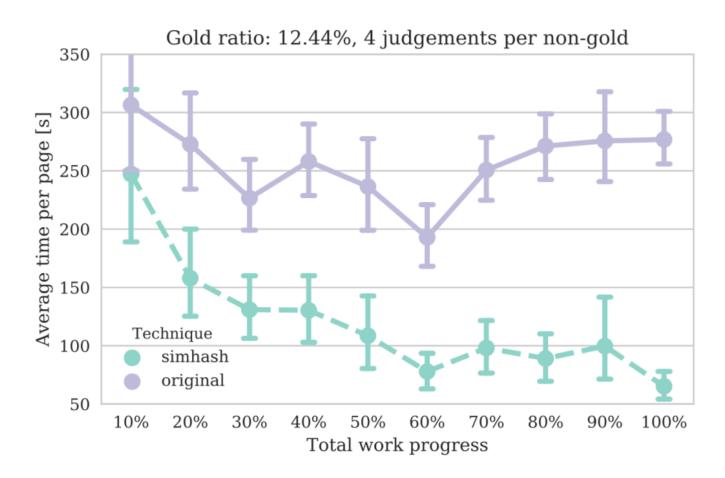
• Colluding workers sharing the questions they see can identify gold



Alessandro Checco, Jo Bates, and Gianluca Demartini. Adversarial Attacks on Crowdsourcing Quality Control. In: Journal of Artificial Intelligence Research (JAIR). March 2020.

simhash – Gold Detection

• Time saved by workers with Gold Detection



Countermeasures and implications

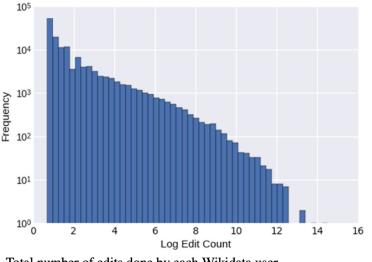
- Countermeasures
 - Increase gold set size
 - Increase worker retention (probability to see gold questions with high multiplicity is low)
 - Non uniform selection from the gold set
 - Programmatic gold questions (with distant simhashes)
- Implications the future of crowd work
 - A shift towards different quality assurance approaches
 - Re-balancing in part the digital power imbalance
 - Trust between requesters and crowd workers
 - Bias in collected data

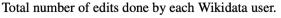
Knowledge Graph Editors

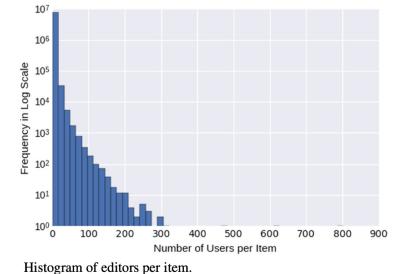
- The Wikidata edit history (2012-2016)
 - 35M (human) edits, 8M items, 140K editors

Cristina Sarasua, Alessandro Checco, Gianluca Demartini, Djellel Difallah, Michael Feldman, and Lydia Pintscher. **The Evolution of Power and Standard Wikidata Editors: Comparing Editing Behavior over Time to Predict Lifespan and Volume of Edits**. In: Computer Supported Cooperative Work (CSCW) Special Issue on Crowd Dynamics: Conflicts, Contradictions, and Cooperation Issues in Crowdsourcing, Springer, 2018.

- In Wikidata we find shorter times between edits than in Wikipedia
- Why do certain editors have a lifetime longer than others?
 - It's a habit: Editors with long lifespan have a constant contribution over months, while editors with short lifespan do not
 - It's not boring: Editors with a long lifespan tend to increase the diversity of the type of their edits







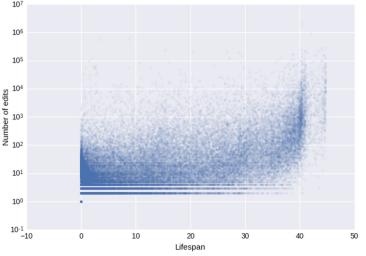
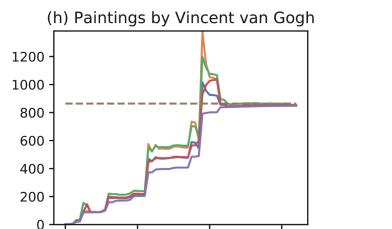
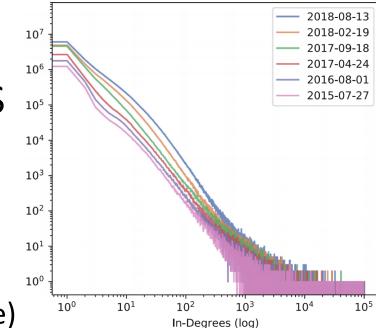


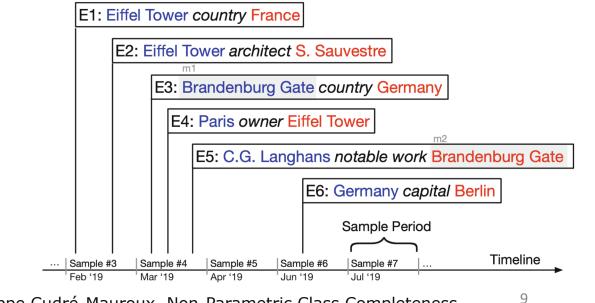
Figure 7. Number of edits vs lifespan.

Knowledge Graph - Completeness

- Estimating Class Completeness
 - Do we have all the cities of Germany in the KG?
- Need to know class cardinality
 - Easy for US States, difficult for others (need to estimate)
- Estimation based on capture/recapture
 - Need sampling/mentions over time







Michael Luggen, Djellel Difallah, Cristina Sarasua, Gianluca Demartini, and Philippe Cudré-Mauroux. Non-Parametric Class Completeness Estimators for Collaborative Knowledge Graphs. In: The **International Semantic Web Conference** (ISWC 2019 - Research Track).

Crowdsourcing Truthfulness Judgements

- ~600 MTurk US workers
- To assess truthfulness of
 - US political statements (Politifact)
 - non-US political statements (ABC)
- 3 scales (3, 6, and 100 levels)

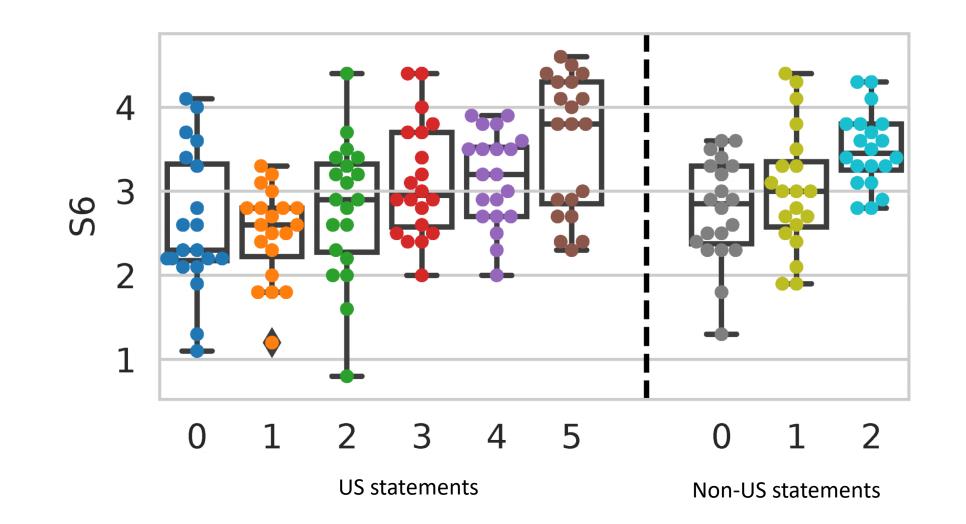
Table 1: Example of statements in the PolitiFact and ABC datasets.

	Statement	Speaker, Year
PolitiFact Label: mostly-true	"Florida ranks first in the nation for access to free prekindergarten."	Rick Scott, 2014
ABC Label: in-between	"Scrapping the carbon tax means every household will be \$550 a year better off."	Tony Abbott, 2014

- All data:
- https://github.com/kevinRoitero/crowdsourcingTruthfulness

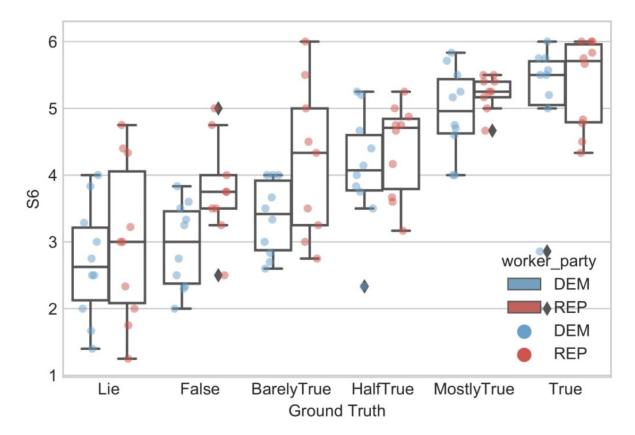
Kevin Roitero, Michael Soprano, Shaoyang Fan, Damiano Spina, Stefano Mizzaro and Gianluca Demartini. **Can The Crowd Identify Misinformation Objectively? The Effects of Judgments Scale and Assessor's Bias**. In: The 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2020)

Crowd Performance VS Expert Ground Truth



Fake News labelling - Political bias

- Fact checkers are expert journalists verifying sources and validating news
- Can we (non-experts) do the same?
- Non-expert people who vote REP are more likely to believe to statements by REP politicians



12

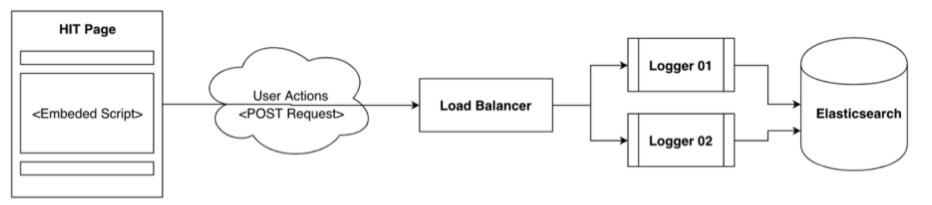
David La Barbera, Kevin Roitero, Damiano Spina, Stefano Mizzaro, and Gianluca Demartini. **Crowdsourcing Truthfulness: The Impact of Judgment Scale and Assessor Bias**. In: The 42nd European Conference on Information Retrieval (ECIR 2020). Lisbon, Portugal, April 2020.

Outline

- Bias in Crowd-generated Data
 - Quality Control and Adversarial Attacks (HCOMP 2018 best paper + JAIR)
 - Wikidata editors and graph (CSCWJ + ISWC 2019)
 - Political bias (ECIR 2020, SIGIR 2020, CIKM 2020)
- Modelling Behavior
 - Logging Behaviors
 - Task Abandonment (WSDM 2019 + TKDE)
 - Experienced crowd workers (WSDM 2020)
 - Behavior embeddings (CIKM 2020)

Logging User Behaviors

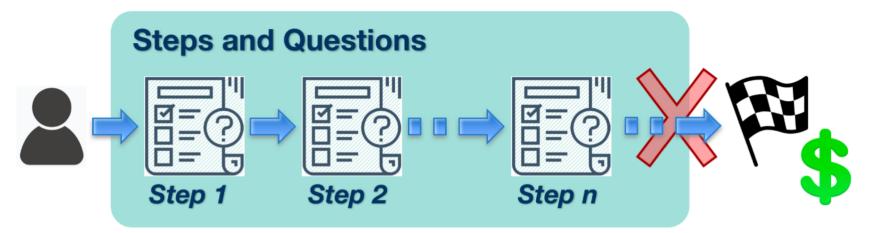
- UQCrowd Logging System
 - JS code embedded in the crowdsourcing tasks
 - Send msg (for every click, keystroke, scroll, new tab, etc.) to our server



- Observe user/worker online behaviors while they complete tasks
- https://github.com/d-lab/uqcrowd-log

Task Abandonment in Crowdsourcing

- Quantify task abandonment (i.e., workers who start but don't finish a task)
- 5K workers, 280K log entries over 4K documents
- Logged all actions and sent them to our external server before completion
- Total time not rewarded due to abandonment: 616 hours -> 3.5 months FTE



Lei Han, Kevin Roitero, Ujwal Gadiraju, Cristina Sarasua, Alessandro Checco, Eddy Maddalena, and Gianluca Demartini. All Those Wasted Hours: On Task Abandonment in Crowdsourcing. In: 12th ACM International Conference on Web Search and Data Mining (**WSDM 2019**). Melbourne, Australia, February 2019.

The Impact of Crowd Work Experience

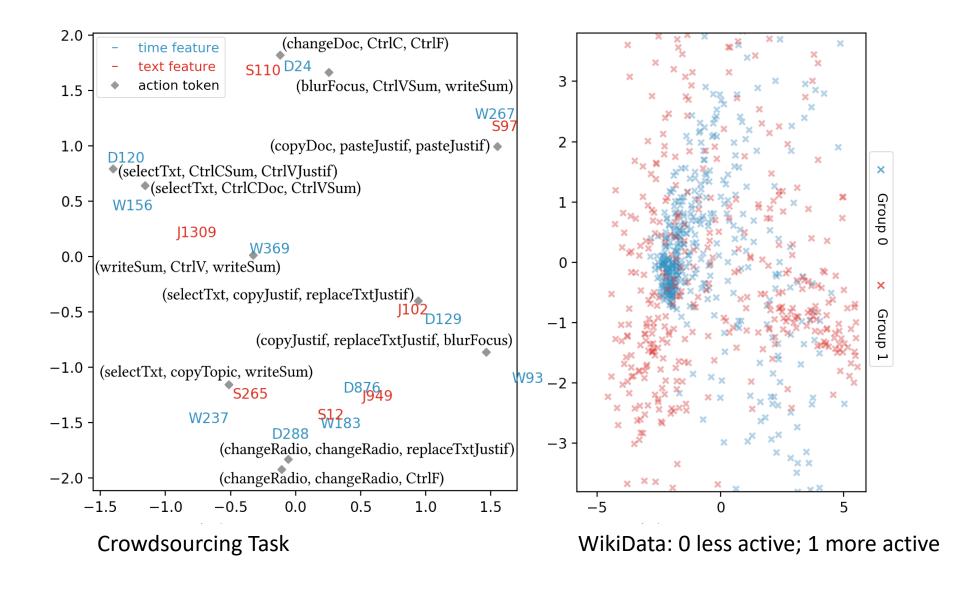
- Survey + Interviews + Crowdsourcing (1'200 judgments, 154 workers)
- Findings:
 - Shortcuts (copy/paste) and reusing existing text -> reduce task time, increase wages!
 - Ctrl (Cmd) + F helps finding relevant keywords -> It's not popular!
- Experienced workers:
 - reuse previous text more
 - are faster (but not better quality)
 - complete more tasks (participation bias)

Lei Han, Eddy Maddalena, Alessandro Checco, Cristina Sarasua, Ujwal Gadiraju, Kevin Roitero, and Gianluca Demartini. Crowd Worker Strategies in Relevance Judgment Tasks. In: 13th ACM International Conference on Web Search and Data Mining (**WSDM 2020**). Houston, TX, USA, February 2020.

Behavior embeddings

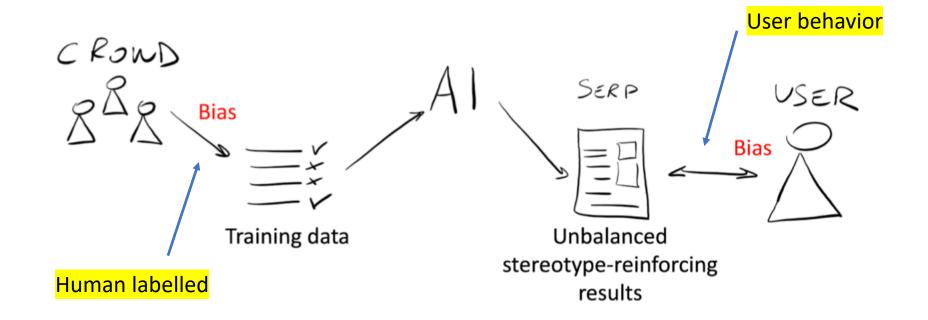
- OrderSingle Actionn-gram Token (n = 2)1Ctrl+C(Ctrl+C, Ctrl+V)2Ctrl+V(Ctrl+V, type characters)3type characters(type characters, delete characters)4delete characters(delete characters, click 'next')5click 'next'-
- Model user behavior using embeddings
 - Raw actions from logs as sequences of tokens + CBOW
 - Vector representations of user behaviors
- Compare user behaviors (e.g., high performers / low performers)
- Changes over time
- Different time granularities

Lei Han, Alessandro Checco, Djellel E. Difallah, Gianluca Demartini, and Shazia Sadiq. Modelling User Behavior Dynamics with Embeddings. In: 29th ACM International Conference on Information and Knowledge Management (**CIKM 2020**).



Datasets: https://github.com/tomhanlei/20cikm-behavior

Should AI systems reinforce stereotypes or rather break the bubble?



Hybrid Human-Al Approaches

- Crowd workers provide reliable (but not perfect) labels
- Al can provide reliable (but not perfect) labels
- Experts can provide perfect labels and justifications
- Can we leverage them all to work effectively and at scale?

Gianluca Demartini, Stefano Mizzaro, and Damiano Spina. Human-in-the-loop Artificial Intelligence for Fighting Online Misinformation: Challenges and Opportunities. In: Data Engineering Bulletin, September 2020 issue.

Open Research Questions

- Who should do what?
 - Task allocation models
 - Cascade models: First AI to label at scale and quickly, then experts to "slowly" check the most important ones
- Urgency vs effectiveness
 - Identify difficult data items for expert to check and let "easy" ones for non-experts
- How would experts actually work when embedded in such a new framework
 - Trust in the hybrid system
 - Giving up levels of control: need for self-explainable human-in-the-loop AI tools

Summary

gianlucademartini.net demartini@acm.org @eglu81

- Human-in-the-loop AI systems can solve complex tasks at scale by combining
 - The ability of machines to scale over very large amounts of data
 - The quality of human intelligence and **manual content curation**
- Humans come with challenges
 - Data-driven (activity logging and log analysis) behavior understanding
 - System optimization (improving efficiency and effectiveness)
- Ongoing research
 - Better AI with humans to *pre-process* or *post-process* data
 - A combined expert-AI-crowd approach could provide the best scale/quality/urgency trade-off