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Research	Interests	

•  En.ty-centric	Informa.on	Access	(2005-now)	
–  Structured/Unstruct	data	(SIGIR	12),	TRank	(ISWC	13)	
– NER	in	Scien8fic	Literature(WWW	14)	Preposi8ons	(CIKM	14)	

•  Hybrid	Human-Machine	Systems	(2012-now)	
–  ZenCrowd	(WWW	12,	VLDBJ),	CrowdQ	(CIDR	13)	
– Memory-based	Informa8on	Systems	(WWW	14,	PVLDB)	

•  Be=er	Crowdsourcing	PlaCorms	(2013-now)	
–  Pick-a-Crowd	(WWW	13),	Malicious	Workers	(CHI	15)	
–  Scale-up	Crowdsourcing	(HCOMP	14),	Dynamics	(WWW	15)	
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Learning	Objec8ves	
•  Demonstrate	an	understanding	of	crowdsourcing	

applica8ons	to	search	problems	with	its	opportuni.es	as	
well	as	its	limita.ons;		

•  Demonstrate	knowledge	of	the	common	techniques	to	be	
used	in	crowdsourced	task	design	to	improve	the	quality	of	
the	collected	data;	

•  Discuss	how	crowdsourcing	can	be	leveraged	in	
combina.on	with	machine-based	algorithms	for	data	
processing	problems	and	to	answer	complex	search	
queries;		

•  Discuss	the	benefits	and	challenges	of	applying	
crowdsourcing	solu8ons	for	search	within	the	enterprise.	

Slides	Available	here:	
www.gianlucademar8ni.net/crowdsourcing/searchsolu8ons	
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Introduc8ons	

•  Name,	role	
•  Interest	/	experience	in	Crowdsourcing	/	Data	
Processing	/	Search	
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Tutorial	Outline	

•  Part	1	
–  Introduc)on	to	Crowdsourcing	(30min)	
– Ensuring	Quality	in	Paid	Crowdsourcing	(60min)	

•  Part	2	
– Hybrid	Human-Machine	Data	Integra)on	(30min)	
– Crowd-Powered	Search	(30min)	
– Enterprise	Crowdsourcing	for	Search	(30min)	
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Introduc8on	to	Crowdsourcing	



Crowdsourcing	

•  Portmanteau	of	"crowd"	and	"outsourcing,"	first	
coined	by	Jeff	Howe	in	a	June	2006	Wired	
magazine	ar8cle	

•  [Merriam-Webster]	the	prac8ce	of	obtaining	
needed	services,	ideas,	or	content	by	solici8ng	
contribu8ons	from	a	large	group	of	people	and	
especially	from	the	online	community	rather	than	
from	tradi8onal	employees	or	suppliers	
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Crowdsourcing	

•  Leverage	human	intelligence	at	scale	to	solve	
– Tasks	simple	for	humans,	complex	for	machines	
– With	a	large	number	of	humans	(the	Crowd)	
– Small	problems:	micro-tasks	(Amazon	MTurk)	

•  Examples	
– Wikipedia,	Image	tagging	

•  Incen8ves	
– Financial,	fun,	visibility	

•  See	also	longer	tutorial	at	ISWC	2013	
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Crowdsourcing	Incen8ves	

•  Paid	Crowdsourcing	
•  Fun	(enjoyment)	

– Gamifica8on	

•  Community	(belonging,	desire	to	help)	
– For	example,	Wikipedia	
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The	Way	Industry	Looks	At	It	
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Case-Study:	Amazon	MTurk	

•  Micro-task	crowdsourcing	marketplace	
•  On-demand,	scalable,	real-8me	workforce	
•  Online	since	2005	(s8ll	in	“beta”)	
•  Currently	the	most	popular	plarorm	
•  Developer’s	API	as	well	as	GUI	
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Amazon	MTurk	
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Amazon	MTurk	

•  Requesters	create	tasks	(HITs)	
•  The	plarorm	takes	a	fee	(30%	of	the	reward)	
•  Workers	preview,	accept,	submit	HITs	
•  Requesters	approve,	download	results	

•  If	the	results	are	approved,	workers	are	paid	
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Demographics	of	MTurk	workers	
in	2009	

Demographics�of�MTurk workers
http://bit.ly/mturk�demographicshttp://bit.ly/mturk demographics

Country of residenceCountry�of�residence
• United�States:�46.80%
• India:�34.00%
• Miscellaneous:�19.20%

Country	of	residence	
•  United	States:	46.80%	
•  India:	34.00%	
•  Miscellaneous:	19.20%	

2013	Sta8s8cs:	
1M	workers	
10%	ac8ve	
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Demographics	of	MTurk	workers	
in	2009	

Demographics�of�MTurk workers
http://bit.ly/mturk�demographics
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Demographics	of	MTurk	workers	
in	2009	

Demographics�of�MTurk workers
http://bit.ly/mturk�demographicshttp://bit.ly/mturk demographics

17	h=p://www.mturk-tracker.com/	
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5-year	Analysis	of	MTurk	workload	

•  Mturk-tracker.com	
– Collects	metadata	about	each	visible	batch	(Title,	
descrip8on,	rewards,	required	qualifica8ons,	HITs	
available,	etc),	that	is,	set	of	similar	tasks	or	HITs	

– Records	batch	progress	(every	~20	minutes)	
– Covers	130M	tasks	

Djellel	Eddine	Difallah,	Michele	Catasta,	Gianluca	Demar8ni,	Panagio8s	G.	Ipeiro8s,	and	
Philippe	Cudré-Mauroux.	The	Dynamics	of	Micro-Task	Crowdsourcing	--	The	Case	of	
Amazon	MTurk.	In:	24th	Interna8onal	Conference	on	World	Wide	Web	(WWW	2015),	
Research	Track.	Firenze,	Italy,	May	2015.		 19	



Country-Specific HITs 

Workers from US, India and Canada are the most sought after. 
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Distribution of Batch Size 
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“Power-law” 



 
Batch Size over time 

Very large 
batches  

start to appear 
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How much are HITs paid? 
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5-cents is the 
new  

1-cent 



Requesters and Reward over time 
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Increasing 
number of New 

and Distinct 
Requesters 



One month of MTurk Requesters 
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Top requesters 
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Distribution of HIT Types 
Less Content 
Access batches 

 
Content Creation: 

the most popular 
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Classify	HITs	into	types	(Gadiraju	et.	
al	2014)	
-  Informa8on	Finding	(IF)	
-  Verifica8on	and	Valida8on	(VV	)	
-  Interpreta8on	and	Analysis	(IA)	
-  Content	Crea8on	(CC)	
-  Surveys	(SU)	
-  Content	Access	(CA)	



Is the Market Elastic? 

Intercept = 2.5 
Slope = 0.5% 

 
 

20% of new work 
gets completed 
within an hour 
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Summary 
•  HIT reward has increased over time 
•  Audio transcription: the most popular task 
•  Demand for Indian workers has decreased 
•  Surveys are most popular for US workers 
•  1000 new requesters per month join 
•  10K new HITs arrive and 7.5K HITs get 

completed every hour 

•  Check #mturkdynamics for more findings 
31 



Why	Crowdsourcing	for	IR	Evalua8on?	

•  Easy,	cheap	and	fast	labeling	
•  Ready-to	use	infrastructure	–	MTurk	
payments,	workforce,	interface	widgets	–	
CrowdFlower	quality	control	mechanisms,	etc.	

•  Allows	early,	itera8ve,	frequent	experiments	–	
Itera8vely	prototype	and	test	new	ideas	–	Try	
new	tasks,	test	when	you	want	&	as	you	go	

•  Proven	in	major	IR	shared	task	evalua8ons	
– CLEF	image,	TREC,	INEX,	WWW/Yahoo	SemSearch	

32	



Gamifica8on	of	IR	Evalua8on	

•  GeAnn:	h=p://www.geann.org/	

•  Relevance	judgments	with	Gamifica8on:	
– Text	relevance	
–  Image	relevance	

33	

Quality	through	Flow	and	Immersion:	Gamifying	Crowdsourced	Relevance	
Assessments.	Eickhoff,	C.,	C.	G.	Harris,	A.	P.	de	Vries,	and	P.	Srinivasan.	SIGIR	2012.	



Tutorial	Outline	

•  Part	1	
–  Introduc)on	to	Crowdsourcing	(30min)	
– Ensuring	Quality	in	Paid	Crowdsourcing	(60min)	

•  Part	2	
– Hybrid	Human-Machine	Data	Integra)on	(30min)	
– Crowd-Powered	Search	(30min)	
– Enterprise	Crowdsourcing	for	Search	(30min)	

34	



Ensuring	Quality	in	Paid	
Crowdsourcing	



A	Crowdsourcing	Task	
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High-level	Issues	in	Crowdsourcing	

•  Process	
–  Experimental	design,	annota8on	guidelines,	itera8on	

•  Choose	crowdsourcing	plarorm	(or	roll	your	
own!)	

•  Human	factors	
–  Payment	/	incen8ves,	interface	and	interac8on	
design,	communica8on,	reputa8on,	recruitment,	
reten8on	

•  Quality	Control	/	Data	Quality	
–  Trust,	reliability,	spam	detec8on,	consensus	labeling	

37	



Task	Design	

•  Ask	the	right	ques8ons	
•  Workers	may	not	be	experts	so	don’t	assume	
the	same	understanding	in	terms	of	
terminology	

•  Instruc8ons	ma=er!	
•  Show	examples	
•  Hire	a	technical	writer	

– Engineer	writes	the	specifica8on	
– Writer	communicates	

38	



Task	Design	-	UI	

•  Generic	8ps	
– Experiment	should	be	self-contained.	
– Keep	it	short	and	simple.	Brief	and	concise.	
– Be	very	clear	with	the	task.	
– Engage	with	the	worker.	Avoid	boring	stuff.	
– Always	ask	for	feedback	(open-ended	ques8on)	in	
an	input	box.	

39	



Bad	Example	

Examples)*)I)

� �����
����������������������	�������������		���)
� Worker)has)to)do)a)lot)of)stuff)

72)Crowdsourcing,for,Information,Retrieval:,Principles,,Methods,,and,Applications,July)24,)2011)

•  Asking	too	much,	task	not	clear,	“do	NOT/reject”	
•  Worker	has	to	do	a	lot	of	stuff	

40	



Good	Example	

•  All	informa8on	is	available	
– What	to	do	
– Search	result	
– Ques8on	to	answer	

A"Better"Example"

� All"information"is"available"
� What"to"do"
� Search"result"
� Question"to"answer"

"

74"Crowdsourcing,for,Information,Retrieval:,Principles,,Methods,,and,Applications,July"24,"2011"
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Form	and	Metadata	

•  Form	with	a	close	ques8on	(binary	relevance)	
and	open-ended	ques8on	(user	feedback)	

•  Clear	8tle,	useful	keywords	
•  Workers	need	to	find	your	task	

42	



How	Much	to	Pay?	
•  Price	commensurate	with	task	effort	

–  Ex:	$0.02	for	yes/no	answer	+	$0.02	bonus	for	op8onal	
feedback	

•  Ethics	&	market-factors	
–  e.g.	non-profit	SamaSource	contracts	workers	refugee	
camps	

•  Uptake	&	8me-to-comple8on	vs.	Cost	&	Quality	
–  Too	li=le	$$,	no	interest	or	slow	
–  too	much	$$,	a=ract	spammers	

•  Accuracy	&	quan8ty	
– More	pay	=	more	work,	not	be=er	(W.	Mason	and	D.	
Wa=s,	2009)	
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Quality	Control	

•  Extremely	important	part	of	the	experiment	
•  Approach	as	“overall”	quality;	not	just	for	
workers	

•  Bi-direc8onal	channel	
– You	may	think	the	worker	is	doing	a	bad	job.	
– The	same	worker	may	think	you	are	a	lousy	
requester.	

44	



Quality	Control	

•  Approval	rate:	easy	to	use,	&	just	as	easily	
defeated	

•  Mechanical	Turk	Masters	
–  Recent	addi8on,	only	for	specific	tasks	

•  Qualifica8on	test	
–  Pre-screen	workers’	ability	to	do	the	task	(accurately)	

•  Assess	worker	quality	as	you	go	
–  Trap	ques8ons	with	known	answers	(“honey	pots”)	
– Measure	inner-annotator	agreement	between	
workers	

45	



Qualifica8on	tests:	pros	and	cons	
•  Advantages	

– Great	tool	for	controlling	quality	
– Adjust	passing	grade	

•  Disadvantages	
–  Extra	cost	to	design	and	implement	the	test	
– May	turn	off	workers,	hurt	comple8on	8me	
–  Refresh	the	test	on	a	regular	basis	
– Hard	to	verify	subjec8ve	tasks	like	judging	relevance	

•  Try	crea8ng	task-related	ques8ons	to	get	worker	
familiar	with	task	before	star8ng	task	in	earnest	

46	



Other	quality	heuris8cs	

•  Jus8fica8on/feedback	as	quasi-captcha	
–  Should	be	op8onal	
– Automa8cally	verifying	feedback	was	wri=en	by	a	
person	may	be	difficult	(classic	spam	detec8on	task)	

•  Broken	URL/incorrect	object	
–  Leave	an	outlier	in	the	data	set	
– Workers	will	tell	you	
–  If	somebody	answers	“excellent”	for	a	broken	URL	=>	
probably	spammer	
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Dealing	with	bad	workers	

•  Pay	for	“bad”	work	instead	of	rejec8ng	it?	
–  Pro:	preserve	reputa8on,	admit	if	poor	design	at	fault	
–  Con:	promote	fraud,	undermine	approval	ra8ng	
system	

•  Use	bonus	as	incen8ve	
–  Pay	the	minimum	$0.01	and	$0.01	for	bonus	
–  Be=er	than	rejec8ng	a	$0.02	task	

•  If	spammer	“caught”,	block	from	future	tasks	
– May	be	easier	to	always	pay,	then	block	as	needed	

48	



Build	Your	Reputa8on	as	a	Requestor	

•  Word	of	mouth	effect	
– Workers	trust	the	requester	(pay	on	8me,	clear	
explana8on	if	there	is	a	rejec8on)	

– Experiments	tend	to	go	faster	
– Announce	forthcoming	tasks	(e.g.	tweet)	
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Crowd	Worker	Communi8es	

50	

Turkop8con.com	
Mturkforum.com	
Turkerna8on.com	



Pick-A-Crowd	

51	Djellel	Eddine	Difallah,	Gianluca	Demar8ni,	and	Philippe	Cudré-Mauroux.	Pick-A-Crowd:	
Tell	Me	What	You	Like,	and	I'll	Tell	You	What	to	Do.	In:	WWW2013	



Ujwal	Gadiraju,	Ricardo	Kawase,	Stefan	Dietze,	and	Gianluca	Demar8ni.	Understanding	
Malicious	Behaviour	in	Crowdsourcing	PlaCorms:	The	Case	of	Online	Surveys.	In:	Proceedings	
of	the	ACM	Special	Interest	Group	on	Computer	Human	Interac8on	(CHI	2015).	

Ineligible 
Workers (IW) 

Fast Deceivers 
(FD) 

Rule Breakers 
(RB) 

Smart 
Deceivers (SD) 

Gold Standard 
Preys (GSP) 

Instruction:  Please attempt this microtask ONLY IF 
you have successfully completed 5 microtasks previously. 
Response:	 	‘this	is	my	first	task’	
	
	eg: Copy-pasting same text in response to multiple 
questions, entering gibberish, etc. 
Response:	 	‘What’s	your	task?’	,	‘adasd’,	‘fgfgf	gsd	ljlkj’	
	
	Instruction:  Identify 5 keywords that represent this 
task (separated by commas). 
Response:	 	‘survey,	tasks,	history’	,	‘previous	task	yellow’	
	
	Instruction:  Identify 5 keywords that represent 
this task (separated by commas). 
Response:	 	‘one,	two,	three,	four,	five’	

These workers abide by the instructions and provide 
valid responses, but stumble at the gold-standard 
questions! 

Behavioral Patterns of Malicious Workers 
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OpenTurk.com	

•  Yet	another	a	plarorm?	Build	on	top	of	Mturk!	
•  Chrome	Extension	for	push	/	no8fica8on	
•  400+	users	
•  h=p://bit.ly/openturk-extension	
•  Open	source:	
h=ps://github.com/openturk/extension	
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Majority	Vote	

•  Ask	N	workers	and	pick	the	most	popular	answer	
•  Works	for	mul8ple-choice	ques8ons	

–  Relevance	judgments	
–  Sen8ment	analysis	/	supervised	machine	learning	

•  For	other	task	use	itera.ons	
– Audio	transcrip8on	
– Ask	one	worker	to	transcribe,	the	next	to	correct,	etc.	

•  Learning	weights	for	workers	
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En8ty	Factor	Graphs	

•  Graph	components	
– Workers,	links,	clicks	
– Prior	probabili8es	
– Link	Factors	
– Constraints	

•  Probabilis8c	
Inference	
– Select	all	links	with	
posterior	prob	>τ	

w1 w2

l1 l2

pw1( ) pw2( )

lf1( ) lf2( )

pl1( ) pl2( )

l3

lf3( )

pl3( )

c11 c22c12c21 c13 c23

u2-3( )sa1-2( )

2	workers,	6	clicks,	3	candidate	links	

Link	priors	

Worker	
priors	

Observed	
variables	

Link	
factors	

SameAs	
constraints	

Dataset	
Unicity	
constraints	
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Aggrega8on	based	on	worker	
similarity	

•  “Community-Based	Bayesian	Aggrega8on	
Models	for	Crowdsourcing”,	Venanzi	et	al.,	
WWW2014.	

•  Community-based	Bayesian	aggrega8on	model	
•  Group	workers	by	the	type	of	errors	they	do			
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SQUARE	

•  A	benchmark	for	crowd	answer	aggrega8on	
– Binary	choices	(e.g.,	sen8ment)	
– Mul8ple-choices	(e.g.,	relevance,	word-sense	
disambigua8on)	

•  Compares	a	number	of	aggrega8on	
techniques	over	a	number	of	tasks	

57	

h=p://ir.ischool.utexas.edu/square/	



Other	benchmarks	

•  Simula8ons	
– BATC	-	A	Benchmark	for	Aggrega8on	Techniques	
in	Crowdsourcing	

– Understand	effect	on	efficiency	and	effec8veness	
– Set	aggrega8on	parameters	

58	



Tutorial	Outline	

•  Part	1	
–  Introduc)on	to	Crowdsourcing	(30min)	
– Ensuring	Quality	in	Paid	Crowdsourcing	(60min)	

•  Part	2	
– Hybrid	Human-Machine	Data	Integra=on	(30min)	
– Crowd-Powered	Search	(30min)	
– Enterprise	Crowdsourcing	for	Search	(30min)	
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Hybrid	Human-Machine	Data	
Integra8on		



Not	sure	

Example:	Hybrid	Data	Integra8on	

paper conf 
Data integration VLDB-01 

Data mining SIGMOD-02 

title author email 
OLAP Mike mike@a 

Social media Jane jane@b 

l  	Generate	plausible	matches	
–  paper	=	8tle,	paper	=	author,	paper	=	email,	paper	=	venue	
–  conf	=	8tle,	conf	=	author,	conf	=	email,	conf	=	venue	

l  Ask	users	to	verify		

paper conf 
Data integration VLDB-01 

Data mining SIGMOD-02 

title author email venue 
OLAP Mike mike@a ICDE-02 

Social media Jane jane@b PODS-05 

Does	a=ribute	paper	match	a=ribute	author?		

No	Yes	

McCann,	Shen,	Doan:	Matching	Schemas	in	Online	Communi8es.	ICDE,	2008	 61	



Example:	Hybrid	Query	Processing		

62	

Use	the	crowd	to	answer	
DB-hard	queries	
	
Where	to	use	the	crowd:	
•  Find	missing	data	
•  Make	subjec.ve	

comparisons	
•  Recognize	pa=erns	

But	not:	
•  Anything	the	computer	

already	does	well		
Disk 2

Disk 1

Parser

Optimizer 

St
at

ist
ics

CrowdSQL Results

Executor 

Files Access Methods

UI Template Manager

Form 
Editor

UI 
Creation

HIT Manager

M
et

aD
at

a

Turker Relationship 
Manager

M.	Franklin,	D.	Kossmann,	T.	Kraska,	S.	Ramesh	and	R.	Xin	.	
	CrowdDB:	Answering	Queries	with	Crowdsourcing,	SIGMOD	2011		
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h=p://dbpedia.org/resource/Facebook	

h=p://dbpedia.org/resource/Instagram	

�ase:Instagram	
owl:sameAs	

Google	

Android	

<p>Facebook	is	not	wai8ng	for	its	ini8al	
public	offering	to	make	its	first	big	
purchase.</p><p>In	its	largest	
acquisi8on	to	date,	the	social	network	
has	purchased	Instagram,	the	popular	
photo-sharing	applica8on,	for	about	$1	
billion	in	cash	and	stock,	the	company	
said	Monday.</p>	

<p><span	about="h=p://dbpedia.org/resource/
Facebook"><cite	property=”rdfs:label">Facebook</
cite>	is	not	wai8ng	for	its	ini8al	public	offering	to	
make	its	first	big	purchase.</span></p><p><span	
about="h=p://dbpedia.org/resource/Instagram">In	
its	largest	acquisi8on	to	date,	the	social	network	has	
purchased	<cite	property=”rdfs:label">Instagram</
cite>	,	the	popular	photo-sharing	applica8on,	for	
about	$1	billion	in	cash	and	stock,	the	company	said	
Monday.</span></p>	

RDFa	
enrichment	

HTML:	



ZenCrowd	

•  Combine	both	algorithmic	and	manual	linking	
•  Automate	manual	linking	via	crowdsourcing	
•  Dynamically	assess	human	workers	with	a	
probabilis8c	reasoning	framework	

64	

Crowd	

Algorithms	Machines	



ZenCrowd	Architecture	

Micro 
Matching 

Tasks

HTML
Pages

HTML+ RDFa
Pages

LOD Open Data Cloud

Crowdsourcing
Platform

ZenCrowd
Entity

Extractors

LOD Index Get Entity

Input Output

Probabilistic 
Network

Decision Engine

M
icr

o-
Ta

sk
 M

an
ag

er

Workers Decisions

Algorithmic
Matchers
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Gianluca	Demar8ni,	Djellel	Eddine	Difallah,	and	Philippe	Cudré-Mauroux.	ZenCrowd:	Leveraging	
Probabilis.c	Reasoning	and	Crowdsourcing	Techniques	for	Large-Scale	En.ty	Linking.	In:	21st	Interna8onal	
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En8ty	Factor	Graphs	

•  Graph	components	
– Workers,	links,	clicks	
– Prior	probabili8es	
– Link	Factors	
– Constraints	

•  Probabilis8c	
Inference	
– Select	all	links	with	
posterior	prob	>τ	
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Lessons	Learnt	

•  Crowdsourcing	+	Prob	reasoning	works!	
•  But	

– Different	worker	communi8es	perform	differently	
– Many	low	quality	workers	
– Comple8on	8me	may	vary	(based	on	reward)	

•  Need	to	find	the	right	workers	for	your	task	
(see	WWW13	paper)	
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ZenCrowd	Summary	

•  ZenCrowd:	Probabilis8c	reasoning	over	automa8c	and	
crowdsourcing	methods	for	en8ty	linking	

•  Standard	crowdsourcing	improves	6%	over	automa8c	
•  4%	-	35%	improvement	over	standard	crowdsourcing	
•  14%	average	improvement	over	automa8c	approaches	

•  Follow	up-work	(VLDBJ):	
–  Also	used	for	instance	matching	across	datasets	
–  3-way	blocking	with	the	crowd	

h=p://exascale.info/zencrowd/	
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ZenCrowd	Architecture	

Gianluca	Demar8ni,	Djellel	Eddine	Difallah,	and	Philippe	Cudré-Mauroux.	ZenCrowd:	
Leveraging	Probabilis.c	Reasoning	and	Crowdsourcing	Techniques	for	Large-Scale	
En.ty	Linking.	In:	21st	Interna8onal	Conference	on	World	Wide	Web	(WWW	2012)	
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Blocking	for	Instance	Matching	

•  Find	the	instances	about	the	same	real-world	
en8ty	within	two	datasets	

•  Avoid	Comparison	of	all	possible	pairs	
– Step	1:	cluster	similar	items	using	a	cheap	
similarity	measure	

– Step	2:	n*n	comparison	within	the	clusters	with	
an	expensive	measure	
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3-steps	Blocking	with	the	Crowd	
•  Crowdsourcing	as	the	most	expensive	similarity	measure	
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tamr.com	

•  Data	Integra8on	solu8ons:	algorithms+experts	

h=p://www.tamr.com/oreilly-webinar-taming-data-variety/	 72	



Tutorial	Outline	

•  Part	1	
–  Introduc)on	to	Crowdsourcing	(30min)	
– Ensuring	Quality	in	Paid	Crowdsourcing	(60min)	

•  Part	2	
– Hybrid	Human-Machine	Data	Integra)on	(30min)	
– Crowd-Powered	Search	(30min)	
– Enterprise	Crowdsourcing	for	Search	(30min)	
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Crowd-Powered	Search		



Slow	Search	

•  “Not	All	Searches	Need	to	Be	Fast”	
– Planning	a	vaca8on	
– Medical	diagnosis	

•  Use	addi8onal	8me	for	human	computa8on	

Jaime	Teevan.	“Slow	Search:	Improving	Informa8on	Retrieval	Using	Human	Assistance”,	
CIKM	2015.	

Jaime	Teevan,	Kevyn	Collins-Thompson,	Ryen	W	White,	and	Susan	Dumais.	“SlowSearch”.	
CACM,	57-8,	Aug	2014.	
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Crowd-powered	Search	

•  Search	process	
– Understand	query	
– Retrieve		
– Understand	results	

•  Machines	are	good	at	opera8ng	at	scale	
•  People	are	good	at	understanding	
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Extract	Direct	Answers	w/	
Crowdsourcing	

77	
Bernstein	et	al.,	Direct	Answers	for	Search	Queries	in	the	Long	Tail,	CHI	2012.	



birthdate	of	the	mayor	of	the	capital	city	of	italy	
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capital	city	of	italy	

79	



mayor	of	rome	
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birthdate	of	ignazio	marino	
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Mo8va8on	

•  Web	Search	Engines	can	answer	simple	factual	
queries	directly	on	the	result	page	

•  Users	with	complex	informa8on	needs	are	
o�en	unsa8sfied	

•  Purely	automa8c	techniques	are	not	enough	
•  We	want	to	solve	it	with	Crowdsourcing!	
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CrowdQ	

•  CrowdQ	is	the	first	system	that	uses	
crowdsourcing	to	
– Understand	the	intended	meaning	
– Build	a	structured	query	template	
– Answer	the	query	over	Linked	Open	Data	

83	

Gianluca	Demar8ni,	Beth	Trushkowsky,	Tim	Kraska,	and	Michael	Franklin.	CrowdQ:	
Crowdsourced	Query	Understanding.	In:	6th	Biennial	Conference	on	Innova8ve	Data	Systems	
Research	(CIDR	2013).	
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Off-line:	query	template	genera8on	with	the	help	of	the	crowd	
On-line:	query	template	matching	using	NLP	and	search	over	open	data	



Hybrid	Human-Machine	Pipeline	
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Q=	birthdate	of	actors	of	forrest	gump	

Query	annota8on	 Noun	 Noun	 Named	en8ty	

Verifica8on	

En8ty	Rela8ons	

Is	forrest	gump	this	en8ty	in	the	query?	

Which	is	the	rela8on	between:	actors	and	forrest	gump	 starring	

Schema	element	 Starring													<dbpedia-owl:starring>		

Verifica8on	 Is	the	rela8on	between:	
Indiana	Jones	–	Harrison	Ford	
Back	to	the	Future	–	Michael	J.	Fox	
of	the	same	type	as	
Forrest	Gump	-	actors	
	
	
	



Structured	query	genera8on	

SELECT	?y	?x	
WHERE	{	?y	<dbpedia-owl:birthdate>	?x	.	

	 	 	?z	<dbpedia-owl:starring>	?y	.	
	 	 	?z	<rdfs:label>	‘Forrest	Gump’	}	
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Results	from	BTC09:	

Q=	birthdate	of	actors	of	forrest	gump	MOVIE	
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Overview	of	hybrid	systems	
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Overview	of	hybrid	systems	

•  Balance	between	systems	that	use	the	human	
component	as	pre-processing	or	post-
processing	of	data	(11	vs	13)		

•  Mostly	monetary	reward	
•  Majority	of	systems	perform	batch	data	
processing	rather	than	real-8me	jobs		

•  In	2014	we	can	observe	a	decreased	number	
of	hybrid	human-machine	systems	being	
propose	:	focus	on	solving	core	problems	
rather	than	building	new	systems	
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Summary	

•  Crowdsourcing	big	data	can	make	you	go	
bankrupt!	->	hybrid	systems	

•  When	to	ask	a	human,	when	to	trust	the	machine	
•  Hybrid	systems	(human	in	the	loop)	

– Pre-processing:	training	data	for	ML	
– Post-processing:	based	on	confidence	scores	
– Mix:	ac8ve	learning	

Gianluca	Demar8ni.	Hybrid	Human-Machine	Informa.on	Systems:	Challenges	
and	Opportuni.es.	In:	Computer	Networks,	Special	Issue	on	Crowdsourcing,	
Elsevier.		 90	



Tutorial	Outline	

•  Part	1	
–  Introduc)on	to	Crowdsourcing	(30min)	
– Ensuring	Quality	in	Paid	Crowdsourcing	(60min)	

•  Part	2	
– Hybrid	Human-Machine	Data	Integra)on	(30min)	
– Crowd-Powered	Search	(30min)	
– Enterprise	Crowdsourcing	for	Search	(30min)	
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Enterprise	Crowdsourcing	for	
Search	



Enterprise	Crowdsourcing	

•  Internal	crowd		
– Employees	of	the	company	
– Full-8me	annotators	
– Casual	crowd	workers	

•  Pro:	Trust,	Domain	Knowledge	
•  Contra:	Incen8ves,	Load-balancing	
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Crowds	for	Enterprise	Crowdsourcing	

•  Internal	Crowd	
–  IBM	
– Microso�	
– Google	

•  External	Crowd	
– Amazon	MTurk	
– Yandex	Toloka	toloka.yandex.com	
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Crowds	for	Enterprise	Crowdsourcing	

•  Mixed	
– NDA	Crowds	by	Crowdflower	
– Top	Tolokers	become	Yandex	employees	

•  Tamr.com	
–  Internal	Expert-sourcing	for	data	integra8on	
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Use	of	Crowdsourcing	for	data	
cleaning	/	extrac8on	

•  Locu	/	GoDaddy	
– h=p://www.oreilly.com/pub/e/3298	
– “learnings	from	17	conversa8ons	with	companies	
that	make	heavy	use	of	crowd	work”	
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Conclusions	

•  Crowdsourcing:	a	way	to	get	manual	data	
annota8on	/	cleaning	/	processing	at	scale	

•  Applica8ons	to	search	
– Evalua8on	/	relevance	judgments	
– Complex	query	understanding	
–  Informa8on	Finding	(e.g.,	customer	care	phone	no)	
– Result	extrac8on	and	aggrega8on	in	tabular	format	
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Conclusions	

•  Challenges	
– Quality	if	public	crowds	are	used	
– Many	techniques	can	be	used	to	guarantee	high	
quality,	commercial	services	are	coming	up	

– Deadlines:	it	is	difficult	to	predict	crowd	execu8on	
8me	

– Task	reward	can	be	used	as	a	means	to	speed-up	
execu8on	

– Cost:	can	be	reduced	thanks	to	hybrid	human-
machine	systems	
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