Part II
Quality Control in Crowdsourcing

Djellel Eddine Difallah
University of Fribourg, Switzerland
Agenda

1. Introduction to Quality Issues in Crowdsourcing
2. Aspects that Affect the Quality of Results
3. Understanding Worker Malicious Behavior
4. Typical Quality Control Measures
5. Best Practices and Design Patterns
Introduction /1

- Google, Microsoft Bing.
 - Relevance judgment.
 - Image search.
- Twitter.
 - Understand new queries and hashtags.
- Amazon, LinkedIn.
 - Data curation.
Introduction /2
Paid Micro-Task Crowdsourcing

- Offer small monetary reward in exchange of completing short tasks online
 - Entertainment-driven workers primarily seek diversion by taking up interesting, possibly challenging tasks.
 - Money-driven workers mainly attracted by monetary incentives.
- A crowdsourcing platform acts as a marketplace for such tasks (Amazon Mechanical Turk)
- About five million tasks are completed per year at 1-5 cents each
- Some jobs can contain more than 300K tasks
Cheating or Genuine Errors?

1,000 participants on Amazon Mechanical Turk flip a coin and report “h” (heads) or “t” (tails)

Results from Michael Bernstein:
Cheating or Genuine Errors?

1,000 participants on Amazon Mechanical Turk flip a coin and report “h” (heads) or “t” (tails)

Results from Michael Bernstein:
Worker Affinity and Errors

Franklin, Kossmann, Kraska, Ramesh, Xin
CrowdDB: Answering Queries with Crowdsourcing.
SIGMOD, 2011
Task Arrival vs Completion Time

CDF of completion times for HIT Groups

% of HIT groups with completion time < x

Completion time for HIT group (in hours)
Batch Size vs Error Rate

Eickhoff, Carsten, and Arjen P. de Vries.
1. Introduction to Quality Issues in Crowdsourcing

2. Aspects that Affect the Quality of Results

3. Understanding Worker Malicious Behavior

4. Typical Quality Control Measures

5. Best Practices and Design Patterns
Task Pricing

- Too little reward leads to “sloppy” work (no commitment from the workers).
- Paying more increases the quantity of responses and the throughput, but not the quality.
- Encourages good workers.
- Attract bad workers with sophisticated cheating schemes (automated scripts, sharing answers).

Workers Screening

- Current tools for workers selection (or blocking) are based on statistics which are not necessarily indicative of the worker’s skills.

- Unique IDs can be used to track performance for current and future experiments.

Panos Ipeirotis
Requester Reputation

- Workers express their dissatisfaction on forums and specialized platforms.
- Underpaying requesters.
- Poor task design or instructions.
- Unclear policy of rejection.

Task Packaging

• HIT Meta information (pay, title, description, instructions).

• Task granularity.
 • Small tasks can attract workers who are motivated by fun.

• Task formulation.

• The user interface of the HITs.
 • “This took me about half an hour. Mega bubble hell though” — a worker.

Framing and Priming

• Workers seem to respond better when they know what the task results will be used for.

• Inter-tasks content affect the answers provided by the crowd.

Agenda

1. Introduction to Quality Issues in Crowdsourcing
2. Aspects that Affect the Quality of Results
3. Understanding Worker Malicious Behavior
4. Typical Quality Control Measures
5. Best Practices and Design Patterns
Challenges

Diverse pool of crowd workers with different behavior and various motivations

Malicious Workers: workers with ulterior motives, who either simply sabotage a task, or provide poor responses in an attempt to quickly attain task completion for monetary gains.

Untrustworthy: workers who provide wrong answers in response to one or more simple and straightforward attention-check or gold standard questions.

Worker Behavioral Patterns

Ineligible Workers (IW)

Instruction: Please attempt this microtask ONLY IF you have successfully completed 5 microtasks previously.
Response: ‘this is my first task’

Fast Deceivers (FD)

eg: Copy-pasting same text in response to multiple questions, entering gibberish, etc.
Response: ‘What’s your task?’, ‘adasd’, ‘fgf gsd ljkj’

Rule Breakers (RB)

Instruction: Identify 5 keywords that represent this task (separated by commas).
Response: ‘survey, tasks, history’, ‘previous task yellow’

Smart Deceivers (SD)

Instruction: Identify 5 keywords that represent this task (separated by commas).
Response: ‘one, two, three, four, five’

Gold Standard Preys (GSP)

These workers abide by the instructions and provide valid responses, but stumble at the gold-standard questions!

Worker Behavioral Patterns in a Survey Experiment

1000 workers, 34 questions: multiple choice, open ended and likert scale.

Task Completion Time vs Worker Maliciousness

1000 workers, 34 questions: multiple choice, open ended and likert scale.
Cheating Techniques

• Individual Attacks:
 • Random Answers.
 • Educated guess.
 • Automated Answers.
 • Semi-Automated Answers.

References:

Cheating Techniques

• Group Attacks.
• Agree on Answers.
• Answer Sharing.
• Multiple bots.

Agenda

1. Introduction to Quality Issues in Crowdsourcing
2. Aspects that Affect the Quality of Results
3. Understanding Worker Malicious Behavior
4. Typical Quality Control Measures
5. Best Practices and Design Patterns
Typical Quality Control Measures

• Preventive measures.
 • Prevent malicious workers from participating in your task.

• Post-hoc filtering.
 • Eliminating unreliable responses after paying for and acquiring the required responses from workers.
Preventive measures

Workers Pre-selection

Tools provide by the platform.

- Qualification tasks: Using a sample/simulating real data.
- Demographic filtering e.g., language, region.
Preventive measures

Incentive Design /1

- Using game elements to engage crowd workers, improve their reliability and the overall quality of responses [1, 2, 3].
- Badges, Leaderboards, Levels, Access, Power and Bonuses as furtherance incentives [4].
- ‘Survival probability’, dynamic task allocation with dynamic goals [5].

Preventive measures

Incentive Design /2

• Pricing Schemes

• How much? “The best way to determine the appropriate level of pay is to estimate the price per unit of effort” [1].

• Worker retention using periodic bonuses [2].
Post-hoc Analysis

Aggregation

• Repetition: assign the same task to multiple workers [1].

• Majority Voting: Based on agreement between multiple independent judgments.

• Weighted vote (individual performance, community based) [2,3].

• SQUARE: A benchmark for crowd answer aggregation [4]
 • Binary choices (e.g., sentiment).
 • Multiple-choices (e.g., relevance, word-sense disambiguation).

Post-hoc Analysis

Direct Assessment /1

• Gold-standard Data.

• Relying on questions with priorly known answers to filter out low quality workers.

• Attention check questions.

• Captchas.

• Simple tasks (result of a sum).
Direct Assessment

• Continuous testing and feedback

• Initial training phases followed by the sporadic insertion of test data (gold standard data) [1, 2].

• Providing expert feedback and allowing workers to assess their work, improves quality of crowd work [3].

[3]. Dow, Steven, et al. Shepherd the crowd yields better work. CSCW 2012.
Agenda

1. Introduction to Quality Issues in Crowdsourcing

2. Aspects that Affect the Quality of Results

3. Understanding Worker Malicious Behavior

4. Typical Quality Control Measures

5. Best Practices and Design Patterns
 1. Pricing Using Error Time Area
 2. Task Design Patterns
 3. Hybrid Human-Machine Aggregation
Pricing Using Error Time Area (ETA)

- Estimate the effort to complete a task
 - Requester: Price and structure their task
 - Worker: Decide whether the task is worth
- ETA is a data-driven effort metric
 - Empirically model relationship between time and quality
Error Time Area (ETA)

- Perform a task under time constraints
- Recommendation: at least seven time limits and 10 workers
- HIT Price = \(Time@10 \times \text{Hourly Wage} \)

Cheng, Teevan, Bernstein. Measuring Crowdsourcing Effort with Error-Time Curves. CHI 2015
ETA
Pros and Cons

✦ Price can be computed easily (and potentially explained to workers)

• Requires gold answers

• Allows Limited response variability, inter-tasks and across workers
Agenda

1. Introduction to Quality Issues in Crowdsourcing
2. Aspects that Affect the Quality of Results
3. Understanding Worker Malicious Behavior
4. Typical Quality Control Measures
5. **Best Practices and Design Patterns**
 1. Pricing Using Error Time Area
 2. **Task Design Patterns**
 3. Hybrid Human-Machine Aggregation
Repetition and aggregation is often used for multiple choice questions. How about:

- Open ended questions.
- Multiple correct versions.
- Good but can do better answers.
- Subjective.
Design Patterns

Find-Fix-Verify

Find

“Identify at least one area that can be shortened without changing the meaning of the paragraph.”

Fix

“Edit the highlighted section to shorten its length without changing the meaning of the paragraph.”

Verify

“Choose at least one rewrite that has style errors, and at least one rewrite that changes the meaning of the sentence.”

Find-Fix-Verify

Use-Cases

• Text editing (proof reading, summarization)[1].

• Fixing reviews (Well written reviews lead to higher sales) [2].

• Translation.

• Improving textual content for machine learning.

1. Introduction to Quality Issues in Crowdsourcing
2. Aspects that Affect the Quality of Results
3. Understanding Worker Malicious Behavior
4. Typical Quality Control Measures
5. **Best Practices and Design Patterns**
 1. Pricing Using Error Time Area
 2. Task Design Patterns
 3. **Hybrid Human-Machine Aggregation**
Hybrid Human-Machine Aggregation

- A Hybrid Human-Machine system combines the results of machine based problem solvers (algorithms) and the the crowd (when necessary).

- Natural Language Processing, Image captioning, Speech processing etc.

- Leverage the output of the algorithm in the quality control process.

- Use-case: Entity Linking.
Effective Entity Linking Architecture

Input
- HTML Pages

SOTA Entity Extraction

Automatic Linking
- DBpedia
- Freebase
- Geonames
- NYTimes

Decision Engine
- Probabilistic Network
- Micro-Tasks

Output
- HTML+RDFa Pages

Example
- of Bern and the city of Fribourg, part of the country.

Example
- http://sws.geonames.org/7285870/
- http://dbpedia.org/page/Canton_of_Fribourg
- http://dbpedia.org/page/Fribourg
- http://sws.geonames.org/2660717/
- http://www.freebase.com/m/01qlgw
- http://www.freebase.com/m/01tvfk

Index
Probabilistic Network for Entity Linking

- Variables
 - Links \((l_i)\)
 - Workers \((w_i)\)
 - Clicks \((c_{ij})\) observed variable of \(w_i\) click for \(l_j\)

- Link Factors

- Priors
 - worker prior
 - link prior

- Constraints
 - SameAs Links
 - Unicity (per KB)
ZenCrowd Results

- Experiment
 - 25 news articles
 - Stanford-NER recognizes 383 out of 488 Linkable Entities
 - On average, we achieve precision improvement over automatic linking when we use crowdsourcing
 - an additional improvement with our probabilistic framework
Q&A

–Djellel Eddine Difallah